Propulsion,Guest Posting on an aircraft, is obtained by creating a force, called thrust, which results from the acceleration of a mass of air by a propeller (driven by a piston engine or a turboshaft engine), or by the combustion of an air/fuel mixture (turbojet engine or rocket engine).

The powertrain, which usually includes one, two or four engines, is one of the main components of the aircraft. This characteristic is often used to classify aircraft: mono, bi or quadrimo, bi or quadritoprop, mono, bi or quadrijet.

The single-flow turbojet engine, which appeared in the Second World War, has given rise to turboprop and turbofan derivatives (turbofan engines) used on almost all heavy or fast-moving aircraft (less than 800 km/h), civilian and military, as well as on fighter jets. There is also a hybrid between these two systems called "propfan".

At the beginning of the 21st century, the propeller-driven piston engine remained the most widely used system in almost all light aircraft (ULMs, planes and light helicopters). It was supplanted by the turbine engine for heavy or rapid helicopters, civil and military. The thrusters are classified below according to their dilution ratio: The proportion between the thrust resulting from the acceleration of cold air and hot air. This classification has the merit of showing that a single principle is used for propulsion, even if it is declined in different technologies. That is why this article includes the propeller-driven motor, the ramjet and the pulsoreactor, which, although they have not undergone significant development, are part of the continuity of the presentation (Petrescu et al., 2017 a-c; Mirsayar et al., 2017).

Speaking about a new engine ionic, means to speak about a new aircraft. The paper presents in a short time the actual engines ion chambers (called the ion thrusters) and other new ionic motors proposed by the authors. The engine (ionic propulsion unit of ions, that accelerates the positive ions through a potential difference) is approximately ten times more efficient than classic system based on combustion. We can further improve the efficiency of the 10-50 times in the case in which is used the pulses of positive ions accelerated in a cyclotron mounted on the ship; efficiency may increase with ease of a thousand times in the case in which the positive ions will be accelerate in a synchrotron high energy, synchrocyclotron or isochronous cyclotron (1-100 GeV). For this, the great classic synchrotron is reduced to a surface-ring (magnetic core). The future (ionic) engine will have a circular particle binding (energy high or very high speed). Thus we can increase the speed and autonomy of the vessel, using a smaller quantity of fuel. It can be used a radiation synchrotron (synchrotron high intensity), with X-ray or gamma radiation. In this case, will result in a beam engine with the wiring (not an ionic engine), which will use only the power (energy, which may be solar energy, nuclear energy, or a combination) and so we will eliminate the fuel. It is suggested to use a powerful LINAC at the outlet of the synchrotron (especially when one accelerates the electron beam) in order not to lose power by photons of the emission premature. With a new ionic engine practically builds a brand new aircraft that can move through the water and air with the same ease. This new aircraft will be able to expedite directly, without an engine with the additional combustion and without the gravity assistance    (Petrescu and Petrescu, 2011, 2012, 2013a, 2013b, 2013c).

History

Hermann Oberth father romanian-german (Romanian citizen by German ethnicity) of missiles, has an inheritance joint venture. On the one hand, he developed the V-2 rockets for nazi Germany during the World War II. On the other hand, his ideas, rejected as not plausible at that time (when presented them as part of its allegations of doctoral), had opened the way for the development of the rockets and later helped up-to-the-minute in the United States of America in space.

Her Youth

Hermann Oberth Julius was born in June 25 1894, from parents speakers of German and Romanian from Transilvania (a province in Romania). Inspired by the novel science fiction of Jules Verne, "from earth to moon", Oberth leans early to study mathematics, of which he knew that finally he need. At the age of 14 years, Oberth has designed the concept of a rocket back down, which would be the use of exhaust gas expelled to propel.

The son of a doctor, Oberth has participated at the University of Munich, in 1912 to study medicine. During the first world war, he served as a doctor in the army Austro- centralina bmw serie 2 , where he quickly realized that he did not want to be a doctor. In 1917, he suggested the development of missiles long range of action with the liquid fuel for the German army, which has immediately rejected the idea. He studied, also, the feasibility of a rocket with several steps to the waiver gears who were useless.

Oberth married Mathilde Hummel on 6 July 1918. The couple has had four children, two of whom were killed during the second world war.

The Theory of the Missile Dismissed

At the end of the first world war, Oberth returned to Germany to participate at the University of Heidelberg, studying physical, rather than medicine. In 1922, he presented dissertation based on a design by the missile. It has been rejected by the scientists gophers then.

It fiercely, he has published his theories as a pamphlet entitled "Die Rakete zu den Planetenräumen" ("by missile in space planetary drive"), which has extended it subsequently at 429 pages. The work not only of the mathematical demonstrated the ability of a rocket leaving the orbiting the earth, but also explored the theory that finally they will be able to operate in a vacuum, where they would be able to travel even faster than their own exhaust (When Robert Goddard has proposed in an independent manner, the idea that a missile would be able to maintain the tractive force in a vacuum in the year 1920, he was faced with a public ridiculing.).

Oberth also has reached the problems with respect to the potential effects of the traveling in the space on the human body, as well as the ability to launch satellites orbit.

The work of the Oberth have attracted a lot of attention from the community of missiles, inspiring a young Werhner von Braun to apply in math and physics in order to better understand the equations. A few years later von Braun introduced Oberth in the “German Space Travel Society”, where later Oberth become the president.